Probability Of Pocket Pair
Posted : admin On 3/29/2022Understanding Probability In Texas Holdem Is An Essential Aspect Of Profitable Play
– Pre-Flop Probability Guide
- Probability Of Being Dealt Pocket Pair
- Probability Of Flopping A Set With Pocket Pair
- Probability Of Pocket Pair
The probability of getting pocket aces in any one hand if 6/1326. When playing against nine players, the probability of winning with pocket aces is 31.36% – assuming all players stay until the end. Poker aces win 85% of the time against an opponent, although this varies depending on the other hands around the table and the number of opponents. Pocket Pairs: I. Poker Digest Vol. 1, December 28-January 10, 2002. Every now and then in hold'em, a table is treated to two players who've been dealt the same pocket pair. Determining the probability of this happening is an easy application of inclusion-exclusion.
Ever wondered how often you will be dealt Aces? Or what the chances of facing an over-pair are when you hold Jack-Jack? This section of the site will give you the probability of certain hands before the flop (this page) and in later pages the chances of certain flops (for example one suit flop probability) and the chances of dominating hands being out there to your ace-x hand (where x is one of several small to medium cards).
We start by looking at how the cards in the deck can be dealt based on a random distribution of the 1326 ways of 2 cards falling and how often you’ll expect to be dealt certain hands. Then we take suitedness into account – since there are less ways of being dealt 2 suited cards. Later articles in this series will continue with the essential poker probability and card distribution stats you need.
Poker Calculator Pro: Did you know there is a software tool, approved by all the major rooms which will do all the odds, outs and equity math for you in real time? Poker Calculator Pro is the flagship tool of the cutting edge Pro Poker Labs. Check out Poker Calculator Pro for yourself now!
Firstly, where did the number 1326 come from? Well with 52 cards in the deck your first card is 1/52 this is then multiplied by 1/51 and the total divided by 2 (since it does not matter what order your cards are dealt in) giving 1326 combinations of all cards in any suit.
Of course suitedness is not often important, especially for low cards. The next question is then – what is the number of unique starting hands in Texas Holdem, not counting suits? The answer here is 169 unique hands.
Pre-Flop Poker Probability - 169 Distinct Starting Hands
Now we are getting somewhere. Next we can use the numbers above to work out what the probability of being dealt AA, KK (or in fact any pair) is. This is a case of taking the total number of possible hands and then seeing how many of these are your pair. We will take a pair of Kings as an example. Of the 1326 possible combinations there are 6 ways of being dealt this hand pre-flop. The 6 combinations possible are Kh-Kd, Kh-Kc, Kh-Ks, Kd-Kc, Kd-Ks and Kc-Ks.
6 / 1326 = 0.00435 or 221-to-1
So the chances of being dealt any specific pair are 221:1 against, in fact with 13 possible pairs the chances of being dealt any pair go up to 16-to-1 (there are 78 pair combinations from 1326 total).
Next we can look at unpaired hands, a specific example is the number of ways of being dealt Ace-king pre-flop. Here we have more possible combinations, since there are 8 cards that can be dealt first and then 3 remaining cards to make this hand (we will ignore suitedness for the moment). This gives 16 ways in which A-K can be dealt out of the 1326 combinations – a probability of 0.0121% or approximately 82-to-1. In fact this is the same for any unpaired hand when you ignore the suits.
Pre-Flop Poker Probability - Probability Of Hands Pre-Flop Chart
The reference table below gives probabilities of being dealt specific hands pre-flop: The next article in this series will look at the chances of being dealt hands at the same time as one or more opponent is dealt a higher hand – for example AA vs KK and AK vs QQ.
Pre-flop Hand | Odds | |
AA | 0.045 | Same for any pocket pair |
AK (any suits) | 0.012 | Any 2 cards not inc. suits |
AK (suited) | 0.003 | |
Pair 10-10 or better | 0.023 | 10-10, JJ, QQ, KK or AA |
AK, AQ or AJ | 0.036 | Suits not considered |
2 Suited Cards 10+ | 0.03 | |
Any Suited Connector | 0.039 | 23 suited or better |
2 Cards Jack + | 0.09 | Suits not considered |
Finally we can look at how combinations of pre-flop hands work, asking the question what is the probability of being dealt a playable hand for each position. We will use arbitary early, middle and late position combinations here to demonstrate – the actually hands you play is up to your personal style!
Position | Combinations | ||
Early Position | AA to JJ, AKo, AQs | 46 | 29:1 |
Early Mid Position | AA to 99, AQo+, AJs | 18:1 | |
Mid Position | 77+, A10o+ A8s+ KQ+ | 140 | 9,5:1 |
Late Position | 55+, A7+, QJo+, 78s+ | 5,5:1 |
Mark's Rec: Did you know that poker software tools are available which automatically calculate the math, leaving you to outplay your opponents? Poker Calculator Pro from the awesome Pro Poker Labs is the world's best poker calculator- and is approved by all the major poker sites – it can literally transform your profits overnight! Read our Poker Calculator Pro Review now to find out how…
Related Articles
The math of this gets very messy due to the possibility of more than one playing having a higher pair, including the same type of pair. For example if you have pocket kings two players could have pocket aces. However it is easy to show the expected number of players who will beat you. This would be n*r*(6/1225), where n is the number of opponents, and r is the number of higher ranks. The following table shows the average number of players who will have a higher pocket pair according to your pocket pair (left column) by the number of opponents (top row).
Expected Number of Higher Pocket Pairs by Number of Opponents
Pair | 1 Opp. | 2 Opp. | 3 Opp. | 4 Opp. | 5 Opp. | 6 Opp. | 7 Opp. | 8 Opp. | 9 Opp. |
---|---|---|---|---|---|---|---|---|---|
2,2 | 0.0588 | 0.1176 | 0.1763 | 0.2351 | 0.2939 | 0.3527 | 0.4114 | 0.4702 | 0.529 |
3,3 | 0.0539 | 0.1078 | 0.1616 | 0.2155 | 0.2694 | 0.3233 | 0.3771 | 0.431 | 0.4849 |
4,4 | 0.049 | 0.098 | 0.1469 | 0.1959 | 0.2449 | 0.2939 | 0.3429 | 0.3918 | 0.4408 |
5,5 | 0.0441 | 0.0882 | 0.1322 | 0.1763 | 0.2204 | 0.2645 | 0.3086 | 0.3527 | 0.3967 |
6,6 | 0.0392 | 0.0784 | 0.1176 | 0.1567 | 0.1959 | 0.2351 | 0.2743 | 0.3135 | 0.3527 |
7,7 | 0.0343 | 0.0686 | 0.1029 | 0.1371 | 0.1714 | 0.2057 | 0.24 | 0.2743 | 0.3086 |
8,8 | 0.0294 | 0.0588 | 0.0882 | 0.1176 | 0.1469 | 0.1763 | 0.2057 | 0.2351 | 0.2645 |
9,9 | 0.0245 | 0.049 | 0.0735 | 0.098 | 0.1224 | 0.1469 | 0.1714 | 0.1959 | 0.2204 |
T,T | 0.0196 | 0.0392 | 0.0588 | 0.0784 | 0.098 | 0.1176 | 0.1371 | 0.1567 | 0.1763 |
J,J | 0.0147 | 0.0294 | 0.0441 | 0.0588 | 0.0735 | 0.0882 | 0.1029 | 0.1176 | 0.1322 |
Q,Q | 0.0098 | 0.0196 | 0.0294 | 0.0392 | 0.049 | 0.0588 | 0.0686 | 0.0784 | 0.0882 |
K,K | 0.0049 | 0.0098 | 0.0147 | 0.0196 | 0.0245 | 0.0294 | 0.0343 | 0.0392 | 0.0441 |
Probability Of Being Dealt Pocket Pair
To get the probability that at least one player will beat you I will make the not entirely correct assumption that the number of players with a higher pocket pair is a Poisson random variable with a mean in the above table. Given that assumption the probability that at least one player will beat you is 1-e-µ, where µ is the mean. For examle if you have pocket queens and there are 9 other players the expected number of players with a higher pocket pair is 0.0882, so the probability of at least one player having a higher pocket pair is 1-e-0.0882 = 8.44%. The table below shows those probabilities.
Probability of Higher Pocket Pair by Number of Opponents — Wizard's Approximation
Pair | 1 Opp. | 2 Opp. | 3 Opp. | 4 Opp. | 5 Opp. | 6 Opp. | 7 Opp. | 8 Opp. | 9 Opp. |
---|---|---|---|---|---|---|---|---|---|
2,2 | 5.71% | 11.09% | 16.17% | 20.95% | 25.46% | 29.72% | 33.73% | 37.51% | 41.08% |
3,3 | 5.25% | 10.22% | 14.92% | 19.39% | 23.62% | 27.62% | 31.42% | 35.02% | 38.42% |
4,4 | 4.78% | 9.33% | 13.67% | 17.79% | 21.72% | 25.46% | 29.03% | 32.42% | 35.65% |
5,5 | 4.31% | 8.44% | 12.39% | 16.17% | 19.78% | 23.24% | 26.55% | 29.72% | 32.75% |
6,6 | 3.84% | 7.54% | 11.09% | 14.51% | 17.79% | 20.95% | 23.99% | 26.91% | 29.72% |
7,7 | 3.37% | 6.63% | 9.77% | 12.82% | 15.75% | 18.59% | 21.34% | 23.99% | 26.55% |
8,8 | 2.9% | 5.71% | 8.44% | 11.09% | 13.67% | 16.17% | 18.59% | 20.95% | 23.24% |
9,9 | 2.42% | 4.78% | 7.08% | 9.33% | 11.52% | 13.67% | 15.75% | 17.79% | 19.78% |
10,10 | 1.94% | 3.84% | 5.71% | 7.54% | 9.33% | 11.09% | 12.82% | 14.51% | 16.17% |
J,J | 1.46% | 2.9% | 4.31% | 5.71% | 7.08% | 8.44% | 9.77% | 11.09% | 12.39% |
Q,Q | 0.97% | 1.94% | 2.9% | 3.84% | 4.78% | 5.71% | 6.63% | 7.54% | 8.44% |
K,K | 0.49% | 0.97% | 1.46% | 1.94% | 2.42% | 2.9% | 3.37% | 3.84% | 4.31% |
So my approximation of the probability of at least one higher pocket pair is 1-e-n*r*(6/1225).
P.S. After this column appeared one of my fans, Larry B., wrote a brute force combinatorial program to solve this problems. Here are his results.
Probability of Higher Pocket Pair by Number of Opponents — Larry B.'s Exact Probabilities
Pair | 1 Opp. | 2 Opp. | 3 Opp. | 4 Opp. | 5 Opp. | 6 Opp. | 7 Opp. | 8 Opp. | 9 Opp. |
---|---|---|---|---|---|---|---|---|---|
2,2 | 5.88% | 11.41% | 16.61% | 21.5% | 26.1% | 30.43% | 34.5% | 38.33% | 41.94% |
3,3 | 5.39% | 10.48% | 15.3% | 19.87% | 24.18% | 28.26% | 32.12% | 35.77% | 39.22% |
4,4 | 4.9% | 9.56% | 13.99% | 18.2% | 22.21% | 26.03% | 29.66% | 33.12% | 36.4% |
5,5 | 4.41% | 8.62% | 12.66% | 16.52% | 20.21% | 23.73% | 27.11% | 30.35% | 33.45% |
6,6 | 3.92% | 7.69% | 11.31% | 14.8% | 18.15% | 21.38% | 24.48% | 27.47% | 30.34% |
7,7 | 3.43% | 6.74% | 9.95% | 13.05% | 16.05% | 18.95% | 21.76% | 24.47% | 27.09% |
8,8 | 2.94% | 5.8% | 8.58% | 11.28% | 13.91% | 16.46% | 18.95% | 21.36% | 23.71% |
9,9 | 2.45% | 4.84% | 7.19% | 9.47% | 11.71% | 13.9% | 16.04% | 18.13% | 20.17% |
T,T | 1.96% | 3.89% | 5.78% | 7.64% | 9.47% | 11.27% | 13.04% | 14.77% | 16.48% |
J,J | 1.47% | 2.92% | 4.36% | 5.78% | 7.18% | 8.57% | 9.93% | 11.29% | 12.63% |
Q,Q | 0.98% | 1.95% | 2.92% | 3.88% | 4.84% | 5.79% | 6.73% | 7.67% | 8.6% |
K,K | 0.49% | 0.98% | 1.47% | 1.96% | 2.44% | 2.93% | 3.42% | 3.91% | 4.39% |
Later Stephen Z. suggested a simple approximation. Take the number of higher pairs, multiply by the number of other players, and divide by 2. That is the percentage probability that there will be at least one higher pair. For example, with a pair of jacks in a 10 player game the probability of a higher pocket pair is 3*9/2 = 13.5%. Using that formula you get the following for all situations.
Probability of Higher Pocket Pair by Number of Opponents — Stephen Z. Approximation
Pair | 1 Opp. | 2 Opp. | 3 Opp. | 4 Opp. | 5 Opp. | 6 Opp. | 7 Opp. | 8 Opp. | 9 Opp. |
---|---|---|---|---|---|---|---|---|---|
2,2 | 6% | 12% | 18% | 24% | 30% | 36% | 42% | 48% | 54% |
3,3 | 5.5% | 11% | 16.5% | 22% | 27.5% | 33% | 38.5% | 44% | 49.5% |
4,4 | 5% | 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45% |
5,5 | 4.5% | 9% | 13.5% | 18% | 22.5% | 27% | 31.5% | 36% | 40.5% |
6,6 | 4% | 8% | 12% | 16% | 20% | 24% | 28% | 32% | 36% |
7,7 | 3.5% | 7% | 10.5% | 14% | 17.5% | 21% | 24.5% | 28% | 31.5% |
8,8 | 3% | 6% | 9% | 12% | 15% | 18% | 21% | 24% | 27% |
9,9 | 2.5% | 5% | 7.5% | 10% | 12.5% | 15% | 17.5% | 20% | 22.5% |
T,T | 2% | 4% | 6% | 8% | 10% | 12% | 14% | 16% | 18% |
J,J | 1.5% | 3% | 4.5% | 6% | 7.5% | 9% | 10.5% | 12% | 13.5% |
Q,Q | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% |
K,K | 0.5% | 1% | 1.5% | 2% | 2.5% | 3% | 3.5% | 4% | 4.5% |
Thanks. You make a valid point. The house edge in 6 to 5 blackjack is 1.44% under the usual rules, while double zero roulette is 5.26%. That is 3.7 times as bad. However I have learned through the years that it is almost hopeless getting players to leave a game they like, regardless of how bad the house edge is. So the best I can do is advise them how to play their game of choice. For blackjack players there is still no shortage of 3 to 2 games out there. Playing 6 to 5 is giving the casino an extra 0.8% advantage for no reason at all. I also stress the importance of looking for single-zero roulette if you are a roulette player. So I see no inconsistency.
According to various sources it is required to turn your cards over in a tournament game, but optional in a cash game.
Gamblers in your range certainly do use markers. You should try to establish credit with the casino before you go. Alternatively you can wire the casino money, that way you won’t have to go through a credit check. Either way, do so at least a week in advance. The use of markers and wire is very commonplace in the casino and from what I hear the process usually goes very smoothly.
For those who may not know, RFID stands for Radio Frequency Identification. I’m not an expert on this topic but it is my understanding they will be used to track player betting patterns, which will help for both comping and catching card counters. However counterfeit chips seems to be a growing problem and that may be another benefit. Currently casinos like it when you leave with chips and never cash them. That is why they create so many chips for special occasions, hoping chip collectors will hoard them. Again, I’m not an expert, but I don’t think it would be cost effective to create these chips if the expense were more than the face value. So I think you’ll be safe pocketing chips.
He is probably sick of this policy of reporting to you whenever he talks to someone of the opposite sex. If you can’t trust each other to have an innocent conversation with someone of the opposite sex then the relationship is doomed. So I don’t blame him for getting mad and defensive. I think you are making a small problem into a big one over this. My advice is drop it, and drop this ridiculous confession rule while you’re at it.
Yes, he is right. There are combin(15,2)=105 ways to choose the two best teams out of 15. There are 3*combin(5,3)=30 ways to choose them from the save division. So the probability the two best teams are from the same division is 30/105 = 4/14. The probability of this happening in at least one conference is 1-(10/14)2 = 48.98%.
A reader wrote in to express his comments about the assumptions I made in my answer. Here is a link to his commentary.
Probability Of Flopping A Set With Pocket Pair
There is no particular time to expect the small cards. The last hand in a cut card has just about the same odds as the overall shoe. However if the dealer deals out much more than the average number of hands in a cut card game the last hands tend to be very bad for the player. This is because in the early hands the players and dealer didn’t hit much, which in turn is because lots of large cards came out, leaving more small cards for later in the shoe. So if you notice that you have already passed the average number of hands and the cut card is still a ways off then the deck is probably small card rich and it would be a good time to drop your bet or take a walk. However with other players jumping in and out of the game, and inconsistent cut card placement the practicality of this strategy is very small.
Probability Of Pocket Pair
Based on your version this guy seems like a real bum. Family is a lot more than DNA. If he isn’t willing to accept his responsibilities then he is nothing more than a sperm donor. If he doesn’t care the rest of his family probably won’t either. However he is obligated to help support his child, and I would hold him to that. If you press for the courts for paternity tests his family will learn about this anyway. For now I would lower the temperature and don’t give out any unsolicited information. Brining others into this may only escalate tensions.